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Embeddings are diffeomorphisms between some unseen physical attractor and a reconstructed image.
Different embeddings may or may not be equivalent under isotopy. We regard embeddings as representations
of the attractor, review the labels required to distinguish inequivalent representations for an important class of
dynamical systems, and discuss the systematic ways inequivalent embeddings become equivalent as the em-
bedding dimension increases until there is finally only one “universal” embedding in a suitable dimension.
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I. INTRODUCTION

The first step in the analysis of experimental data gener-
ated by chaotic systems is the search for an embedding [1].
An embedding (in the sense of Takens [2]) is used to “recon-
struct” the experimental attractor. We usually attempt to con-
struct embeddings in spaces of lowest possible dimension.
What we know about experimental attractors is what we
learn by studying their embeddings.

In this work we begin to address a question that has never
been satisfactorily treated: when we study an embedding,
how much of what we learn depends only on the attractor
and how much depends on the embedding?

In the case of embeddings of chaotic data into R3, it is
known that many inequivalent embeddings exist [3-5]. For
an important class of attractors that includes the Rossler at-
tractor and those created by the periodically driven Duffing
and van der Pol oscillators, the labels that are required to
distinguish among inequivalent embeddings are also known.
We will show that as the embedding dimension is increased,
fewer labels are required to distinguish inequivalent embed-
dings, and by the time the embedding dimension is N=5 all
embeddings are equivalent. For embeddings of such three-
dimensional attractors into R, N=35, all information that we
learn by studying the embedded attractor is embedding inde-
pendent since all embeddings are equivalent. For N=3 and
N=4 some additional information results from studying the
embedding: these are the labels distinguishing inequivalent
embeddings.

This work is organized as follows. In Sec. II we review
the embedding concepts of Whitney and Takens and discuss
the conditions under which two embeddings are considered
equivalent or inequivalent. We also introduce three important
questions about the use intended for an embedding of chaotic
data. In Sec. IIT we describe the important class of “genus-
one” attractors and review the indices that are necessary to
distinguish inequivalent embeddings into R* of attractors in
this class. These indices are parity, oriented knot type, and
global torsion. While the necessity of these indices is known
[4], we prove their sufficiency, i.e., that they form a complete
set. In Sec. IV we show that if the embedding space is en-
larged from R3 to R* embeddings with different parity
and/or knot type are equivalent. Surprisingly, we find that
global torsion continues to distinguish embeddings in this
dimension to a certain extent. We also show that if the em-
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bedding space is further enlarged from R* to R> all embed-
dings become equivalent. In Sec. V we outline the program
for a representation theory of strange attractors in more gen-
eral situations, such as three-dimensional attractors of higher
genus and higher dimensional attractors. Our results are sum-
marized in Sec. VL.

II. WHITNEY AND TAKENS EMBEDDINGS

The phase space of dynamical system is a differentiable
manifold. An embedding (in the sense of Whitney [6]) of this
manifold into RV for some N is a diffeomorphism onto its
image—it is one to one and everywhere differentiable with a
differentiable inverse. An embedding of the phase-space
manifold induces an embedding (in the sense of Takens [2])
of the attractor, but the latter is not usually a manifold. In this
way the two notions of embedding are related.

Embeddings of either type are not unique: many possible
mappings exist. Typically, changing the Whitney embedding
of the phase space will alter the Takens embedding of the
attractor. We are primarily interested in the spectrum of Tak-
ens embeddings of the attractor, but we shall study this indi-
rectly by considering the spectrum of Whitney embeddings
of its phase-space manifold. Hereafter the word embedding
shall refer exclusively to Whitney embeddings.

Each embedding is a representation of the original phase
space and its attractor. We introduce a topological notion of
equivalence (or inequivalence) of representations. Two em-
beddings are equivalent if they are smoothly deformable into
each other (stretching and bending are allowed, cutting and
gluing are not). The intuitive notion of a smooth deformation
is made precise by the notion of isotopy. Two embeddings
fo(x) and f,(x) of a manifold M into R" are isotopic if there
is a smooth map F(x,s) defined on M X[0,1] such that
F(x,0)=fy(x), F(x,1)=f,(x), and F(x,s)=f,(x) is a embed-
ding for each fixed s. One thinks of this as a one-parameter
family of embeddings indexed by s. Nonisotopic embeddings
provide distinct or inequivalent representations of an attrac-
tor, as one may not be deformed into another without self-
intersection. Generally, as N increases the number of in-
equivalent embeddings decreases. (There are local
exceptions to this rule. For example, while there are many
knots in R3, there is only one knot type in R2.)

These considerations raise three very important questions:
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(1) for any analysis methodology, which results depend on
the representation and which are representation independent;

(2) for an experimental attractor, what is its spectrum of
inequivalent representations and how are they distinguished;
and

(3) as the embedding dimension increases, which repre-
sentations remain inequivalent?

Question (1) has a precise answer. All geometric measures
(e.g., spectrum of fractal dimensions) are diffeomorphism
invariants. All dynamical measures (e.g., spectrum of
Lyapunov exponents) are also embedding invariants, except
that care must be taken to account for the extra or “spurious”
Lyapunov exponents. As a result, these measures should be
independent of the particular representation used to compute
them. This means that the second and third questions are not
important when the objectives of an analysis are restricted to
computation of geometric and dynamical invariants. Unfor-
tunately, such analyses do not provide information about the
mechanism responsible for generating chaotic behavior [4,5].
By mechanism we mean an understanding of how different
regions of the phase space are brought together and com-
pressed under the flow. In terms of cardboard models, or the
branched manifolds describing a three-dimensional flow,
mechanism describes how the separate branches, each coded
by a separate symbol, are joined together at branch lines
rather than how they wrap around each other when situated
in R3.

Topological measures depend on the chosen representa-
tion [7]. In three-dimensional representations, the spectrum
of the linking numbers of unstable periodic orbits depends in
a well-defined way on the representation. However, the
mechanism responsible for generating chaotic behavior is
representation independent [4,5]. For such analyses the sec-
ond and third questions are important.

III. REPRESENTATION LABELS OF GENUS-ONE
ATTRACTORS

We address the second and third questions for a specific
but widely occurring class of attractors: those whose three-
dimensional phase space is a solid torus 7=D?X S, where
D? is a disk and S' is a circle [8]. This class includes peri-
odically driven two-dimensional nonlinear oscillators such as
the Duffing and van der Pol oscillators as well as autono-
mous three-dimensional dynamical systems such as the
Rossler attractor. More generally it includes all attractors
whose formation is due to the repetition of stretching and
folding processes alone. It does not include the Lorenz at-
tractor, or for that matter any other attractor created by tear-
ing mechanisms. These are attractors of higher genus g=3
[8]. The primary result of this paper is a complete answer to
questions (2) and (3) for dynamical systems whose phase
space is the solid torus.

To answer question (2) we first identify all the indices
required to distinguish orientation-preserving diffeomor-
phisms of 7 into itself. This is the intrinsic part of the prob-
lem. Then we describe all the inequivalent ways the torus
can be embedded into R3. This is the extrinsic part of the
problem. While the problem seems to naturally divide into
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intrinsic and extrinsic parts, these two aspects are not entirely
independent as we shall show.

The inequivalent orientation-preserving diffeomorphisms
of flows on the torus are described by the “mapping class
group.” This group is well known and isomorphic to the
abelian group Z & 7, [9]. The subgroup Z describes rigid ro-
tations about the long axis (longitude) of the torus through an
integer number 7 of full turns. This subgroup is generated by
a single such rotation, which is known as a Dehn twist [9].
The subgroup Z, parametrizes inversion operations. These
operations reverse the directions of both the meridian and the
longitude without changing parity.

It is useful to parametrize points in the torus D?>X S' by
(re'?,s), with 0=r=1, 0=¢<2m and ¢$=0 is identified
with ¢=27, and S! is the unit circle with 0=<s<27 and
s=0 is identified with s=2m. The two subgroups act on the
torus as follows:

7 Global Torsion (re'®,s) — (re' ™), neZ,

7, Inversion (re'®,s) — (re”'®,2m—3s).

The global torsion n from the mapping class group repre-
sents one of the topological indices distinguishing the in-
equivalent representations of flows on a torus in R3. It is
invariant under isotopy of embeddings into R? since it may
be calculated as the Gauss linking number of the core (r=0
in the parametrization above) of the solid torus with a longi-
tude in its boundary and an isotopy will preserve their link
type. In practice, global torsion appears as a systematic
change in linking numbers between pairs of periodic orbits
of an attractor [4,7,10].

The two extrinsic indices, knot type and parity, describe
how the torus sits in R under the embedding. The torus can
be mapped into R so that its core follows any smooth closed
curve. Each different knot in R? provides a different embed-
ding of the torus in R3. In fact, each knot provides two em-
beddings which may or may not be equivalent. The argument
is as follows. Position along a knot can be described by a real
scalar parameter d that is periodic: d and d+2mm describe
the same point on the knot (m € 7). The torus can be mapped
along any knot in two opposite senses, with s=d or
s=2m—d.

This degree of freedom is clearly related to the inversion
degree of freedom (Z,) in the mapping class group, since
(27m—s=d)=(s=2m—d). When the two oriented knots ob-
tained in this way from a closed loop are isotopic they are
called inversion symmetric [11]. Inversion symmetric knots
provide equivalent representations of a torus in R*. Inversion
asymmetric knots (8,7 is the simplest [11]) provide two in-
equivalent representations of a torus in R3. Oriented knot
type provides the second topological index distinguishing in-
equivalent representations of a torus in R3. Note the interac-
tion between the intrinsic (inversion) and extrinsic (knot
type) parts of the problem which leads to the absorption of
the former into the latter. The intrinsic inversion index
merges with extrinsic knot type to produce oriented knot
type.

The third index is parity, obtained under the isometry
(x',x%,x%) — (x',x%,-x%) in R>. Unlike the previous opera-
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tions (the 7, inversion symmetry) this one reverses the hand-
edness of the torus.

This provides the answer to question (2) for the class of
strange attractors whose phase space is a genus-one torus
D? X S'. The complete set of representation labels required to
distinguish inequivalent embeddings into R? are parity, ori-
ented knot type, and global torsion.

IV. EQUIVALENCES IN INCREASING DIMENSION

Question (3) is addressed by embedding inequivalent rep-
resentations from R3 into R, N=4,5,... and checking, for
each N, when they become isotopic. This procedure must
terminate by N=7, according to a theorem by Wu. He has
shown [12] that any two embeddings of an n-manifold into
R?™*1 are isotopic when n=2.

A. Parity

First we show that if the torus is “lifted” into R*, repre-
sentations with different parity or knot type are isotopic in
this larger space. Thus these indices are no longer obstruc-
tions to isotopy, and the corresponding representations be-
come equivalent in R*.

We change parity by lifting from R? into R*, performing a
rotational isotopy on the x3-x* axes, then projecting back
down into R3 using the first three coordinates,

1 1

1 X X 1
X
Inject 2 | Isotopy 2 Project
X X 2
X —_— 3 —_— 3 — X
X x°cos 0 | =7
3 3
X 3 . -X
0 x” sin 6
B. Knot type

Next we consider equivalence in R* of representations
with different oriented knot type. It is well known that knots
“fall apart” in R*. However, the analogous result for thick-
ened knots (solid tori) is not well known, so we demonstrate
it here. First consider the knot defined by the core of the
solid torus. By perturbing the embedding [13] it is possible
to ensure that under planar projection 7: R*— R?, the image
has only a finite number of double points, each representing
a single transverse intersection of the projected knot with
itself. An intersection is transverse if it cannot be pulled apart
by an arbitrarily small perturbation [14]. These double points
are called crossings. Choose any one of these crossings.
Above it are two sections of the embedded torus, one above
the other. We will show that the handedness of the crossing
can be changed by isotopy in R*.

In the neighborhood of this projected crossing the flows in
the upper (U) and lower (L) tubular regions can be param-
etrized as follows:

U:(x’y’z) = [51,)’1’21 + g(sl)]

L:(x,y,2) =[x5,80,20 — g(s7)].

The variables s; and s, parametrize the flow in the upper and
lower tubes. The flow in the upper tubular region is in the x
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FIG. 1. Projection of the knot-type isotopy into R3.

direction with y3+z7=1 and the core of this tube is defined
by y,=z,=0. The flow in the lower tubular region is in the y
direction with x3+z3=1 and the core of this tube is defined
by x,=z,=0. The cores cross in projection into R? at
(x,y)=(0,0). The two tubular regions miss by a large margin
because of the offset in the z direction. The function g(s) is a
“bump function” that is +2 in the neighborhood of the cross-
ing (at s;,=s5,=0) and drops to 0 before other double points
are reached.
We embed into R*(x,y,z,w) as follows:

U:(sy,y1,2; + g(s,)cos 6,+ g(s;)sin 6),

L:(x5,55,2, — g(s,)cos 6,— g(s,)sin 6).

This mapping is an isotopy in R* and has the effect of re-
placing right handed crossings in R? by left handed crossings
in R? as @ varies from O to 7 and the first three coordinates
are projected down to R, as indicated in Fig. 1. By swap-
ping appropriate crossings through this process every embed-
ded knotted torus can be isotoped in R* to a torus that
projects to the standard unknotted torus in R, which is in-
version symmetric.

C. Global torsion
1. Global torsion in R3 revisited

Before discussing global torsion in four and five dimen-
sions we return to the situation in three dimensions in order
to introduce a technique that will be useful in higher dimen-
sions. We previously detected global torsion in R* by com-
puting the Gauss linking number of the core of 7 with a
longitude in the boundary. This approach is difficult to gen-
eralize. Another way to describe global torsion is to calculate
how many times the longitude in the boundary wraps around
the core by utilizing group theory. These two approaches are
essentially equivalent in R3, but the latter permits a straight-
forward generalization to higher dimensions. We will now
describe this latter approach in detail.

Let 7 be a solid torus embedded in the standard way into
IR3 (centered at the origin with rotational symmetry about the
z axis). Denote by vy the core of 7 and by & the standard
longitude in the boundary defined by the intersection of the
xy plane with 7. Then & and vy do not link. If we apply a
single Dehn twist to 7 then the image of §is still a longitude
in the boundary, but now it rotates at a uniform rate around
the core, completing one full rotation. If n Dehn twists are
applied, the image of & will make n full rotations. This n
represents the global torsion.

We now make this idea more precise and in the process
cast it in a form that applies to general embeddings. Again,
start with the standard embedding of 7 with core 7y and lon-
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gitude 6 in the boundary lying radially outward from 7. In-
stead of considering the longitude directly, we construct a
vector field along vy that indicates how ¢ is twisting about 7.
Begin with the unit vector field 7 that is tangent to vy at each
point. Next, adjoin a unit vector field u that points radially
outward from 7 to 8. Finally, add a third unit vector field v
orthogonal to both # and u so that we have a positively ori-
ented orthonormal basis of R? at each point along 7.

Now consider an arbitrary embedding % of 7 into R>. The
embedding will carry the triad (7,u,v) at each x € y onto a
new triad (7,iz,0) at h(x) that, while still linearly indepen-
dent, is not generally orthonormal. This may be remedied by
applying the Gram-Schmidt process to the triad. First, nor-
malize 7 to obtain ¢’. This vector is still tangent to i(+y). Next,
remove the projection of # onto ¢’ and normalize to obtain
u'. This only removes any shearing of i into 7 and not any
twisting of i about 7. Finally, v’ is obtained by removing the
shearing of ¢ into u’ and ¢’ and normalizing. While this
process is abrupt as described, it is possible to smoothly
deform the triad (7,i,0) into (¢’ ,u’,v") [15].

Now we have three orthonormal vector fields along A(y)
that describe the twisting of /(8) about A(+y). Notice that the
vector field u’ need not “point” directly to i(5) because of
distortions induced by the embedding. However, it does in-
dicate the location of 4(J) in a more general sense which can
be seen as follows. In the original standard embedding of 7
one can connect y and & with a ribbon or annulus so that the
vector fields 7 and u are tangent to the ribbon and v is nor-
mal. The image of this ribbon under 4 is a ribbon connecting
h(7y) to h(S) with tangents ¢’ and u’ and normal v’. Therefore
u' describes the direction one would start out on in the rib-
bon to reach i(8). The twisting of 4(5) about h(7y) is equiva-
lent to the twisting of this attached ribbon.

We now desire a way to extract the global torsion from
these vector fields. This can be done by calculating the total
accumulated twisting in the fields as one traverses (7). To
do this one needs a way of comparing the triads at different
points in a standard way. This is accomplished by “parallel
transport” along /(7), which is a way to push vectors along
h(7y) that keeps initially parallel vectors parallel and normal
vectors normal, but otherwise does not alter them. Of course,
t' is always tangent by construction so we need not consider
it further. Now let n be some normal vector field along
h(y). Tt is parallel transported if it obeys the equation
n—{(n,t")t'=0, where the dot indicates differentiation with
respect to arc length and the angle brackets indicate the
innder product in the ambient Euclidean space. Essentially,
to keep the vector field normal one must remove any tangen-
tial component during the translation. This construction
makes sense in any dimension. For further details see [16].

Now that we have a means of moving triads around h(7y)
it is possible to compare the frames at different points. Pick
a reference point x, € h(7y). Parallel translate the triad at x,
along h(7y) to x. As mentioned above the tangent vectors 7’
always coincide. Thus we need only compare the pair of
vectors (u',v’) in the space normal to ¢’ which is a copy of
R2. The transformation between a pair of orthonormal bases
is an orthogonal transformation or element of SO(2). The
transformation at x, is the identity and the transformations
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vary continuously with x. So, for each x € h(7y) an element of
SO(2) is determined, which describes a closed path in SO(2)
starting from and ending at the identity element.

We have associated with an embedding & of 7 a closed
path through the identity in SO(2) which encodes the global
torsion, but this path is not unique. We know that an embed-
ding h; isotopic to hg=h has the same global torsion, but this
new embedding will determine a different curve in SO(2).
However, these two curves are related as follows. Denote by
h, the isotopy from hg to h;. Fix a point p € y and let the
image point x,=h,(p) under each embedding be the reference
point for comparing frames in each embedding ;. We thus
obtain a family of loops in SO(2) through the identity that
vary continuously in s, but this just says the curves are ho-
motopic. We conclude that isotopic embedding determine
homotopic loops in SO(2) so that global torsion depends
only on the homotopy class of the loops.

The set of homotopy class of loops in a space X is called
the fundamental group, denoted ;(X). It is known that
m[SO(2)]=7. Assuming that each of these classes is real-
ized by some embedding we have recovered the global tor-
sion of Z in R3. To show that each class has some realization
by an embedding it is sufficient to consider the standard
embedding of 7 into R® with n Dehn twists applied. The
original triad field on the untwisted 7 is given by (e, e,,e,)
and it is easy to see that these fields are parallel transported
along 7y. Thus the corresponding path in SO(2) is the con-
stant path at the identity which represents the trivial element
0 € Z=m[SO(2)]. If n Dehn twists are applied the normal
frame fields may be written ei”"’(e,,ez), which twist around
the core at a constant rate. The corresponding path in SO(2)
makes n full rotations and represents the element n € Z. We
conc%ude that global torsion is represented by an integer (Z)
in R-.

2. Global torsion in R*

We now apply the method described in the previous sec-
tion in order to determine the global torsion of embeddings
in R* Begin again with the standard 7 in R* with core v,
standard longitude &, and frame fields (¢,u,v). Now let & be
an arbitrary embedding of 7 into R*. This carries the ortho-
normal triad (¢,u,v) onto a a nonorthonormal triad (7,it,0)
and Gram-Schmidt may be used again to obtain an orthonor-
mal triad (¢ ,u’,v’). Now adjoin the unique unit vector field
w' which completes this triad to a positively oriented ortho-
normal basis of R*.

Pick a base point x, € h(+y) and parallel translate the frame
at x, to every other x € h(vy) to compare frames. As before,
the tangents are always identical so we need only compare
the vectors (u',v’,w') in the space orthogonal to ', which is
now a copy of R3. The transformations between triads is now
an element in SO(3), and by comparing the frames at every
point along /() we obtain a closed path in SO(3) through
the identity.

As before, the homotopy class of this path is an invariant
under isotopy. The fundamental group in this case is
m[SO(3)]=7,, so that there are at most only two classes of
global torsion in R*. It remains to show that each is repre-
sented by some embedding. To this end it is sufficient to lift
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FIG. 2. Isotopy of two Dehn twists to the identity in R*.

the standard 7'in R® with n Dehn twists applied into R*. The
frame fields normal to ¢’ are now given by [e¢"?(e,,e.),e,,]
and the paths determined in SO(3) describe n full rotations
about the w-axis which determines the element n mod 2
€ 7/,. The homotopy deforming one path to the other is illus-
trated explicitly in Fig. 5.7 of [17]. We conclude that global
torsion is represented by an integer mod 2 (Z,) in R*. Since
we already know that knot type and parity are no longer
obstructions to isotopy in R* this shows that there are exactly
two representations in this dimension and they differ by a
single Dehn twist.

While the above proof was somewhat abstract, it is pos-
sible to see directly why two Dehn twists should be isotopic
to the identity. Embed 7 in the standard way into R*CR*.
The xz plane intersects the embedding along two disjoint
disks, dividing 7 into two cylinders or handles. Cut open the
embedding along these two disks and insert two Dehn twists,
one at each disk, and reattach (see Fig. 2). Now, spinning the
whole handle on one side of the xz-plane through one full
turn converts the two Dehn twists into a writhe. Finally, the
writhe may be removed by passing one part of the handle
through another in R* as in section IVB, which results in the
trivial embedding. This phenomenon is related to the well-
known Dirac belt and Feynman plate tricks, which demon-
strate that two rotations about an axis in R? are isotopic to
the identity [18].

One may wonder whether a single Dehn twist is isotopic
to the identity, but the preceding proof demonstrates that this
is not the case. If two embeddings are isotopic the curves
determined in SO(3) are homotopic, but the curves for zero
and one Dehn twist belong to different classes in the funda-
mental group so cannot be homotopic.

This result is somewhat surprising since y and § do not
link in R* when considered as just curves in R*. The fact that
they are actually embedded within 7 provides the additional
structure necessary to have them still link in a meaningful
way and determine a global torsion. However, the triviality
of the extrinsic embeddings does have an influence since it
allows pairs of twists to annihilate, leaving a global torsion
that is only defined mod 2.

3. Global torsion in R°

The method utilized in the previous sections essentially
fails in R>. Everything applies verbatim through the part
when one arrives at the orthonormal frame (¢',u’,v’) along
h(vy). At this point there is no unique way to complete this
frame to a frame of R> because there is a two-dimensional
subspace left to span. The pair of vectors may always be
chosen so that the corresponding path in SO(4) the frames
determine is represented by the trivial element in
m[SO(4)]=17,.

This seems to indicate that the global torsion in R® is
trivial. This is in fact the case as we now verify. An isotopy
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between representations that differ by a Dehn twist may be
constructed by first lifting D> X S' into D*X S,

s
s .
i
<r6i¢> —| re

ret’(¢+:)
Now, define an isotopy by
1 0 K
cos @ sin @ re'?
—sin 6 cos 60 | \re'¢s)

This is in fact an isometry. This rotation effectively inter-
changes the two complex factors between =0 and 0=1/2,
so that the projection onto the first two components goes
from an untwisted to a twisted torus. Thus global torsion is
no longer an invariant in D*X S' and, by the natural embed-
ding, in R3.

All the degrees of freedom have now been exhausted and
we have arrived at a “universal” embedding in R°. Every
lower dimensional representation may be regarded as a non-
singular projection of this universal attractor into the appro-
priate Euclidean space, where these representations are dis-
tinguished by the appropriate topological indices.

V. PROGRAM FOR A REPRESENTATION THEORY

In this paper we have taken the first steps in responding to
an important question: what information about a strange at-
tractor depends on its embedding and what information is
independent of the embedding? The proper tool for respond-
ing to this question is a representation theory for strange
attractors. Inequivalent representations are distinguished by
representation labels of topological origin. As the dimension
of the embedding space increases there is more room in
which to move about. This extra room lifts obstructions to
isotopy so that some representation labels drop away. Finally,
at sufficiently high dimension there is so much room that all
obstructions are lifted and all representations become isoto-
pic and therefore equivalent.

This general program is summarized by the following
steps:

(1) determine a Euclidean space of minimum dimension
into which chaotic data and its phase-space manifold can be
embedded;

(2) compute the complete set of inequivalent representa-
tions (and topological indices) in this space;

(3) embed this manifold into a Euclidean space of one
higher dimension. Determine which representations remain
inequivalent and which become equivalent because of the
additional room available for isotopies;

(4) repeat until all representations become equivalent.

We have carried this problem out for an important class of
three-dimensional strange attractors: those of genus one. The
extension of this program to three-dimensional systems of
higher genus is currently under way. In this case the repre-
sentation labels that distinguish inequivalent representations
are already known [5].
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In the higher dimensional case very little is known about
the topological indices that are necessary to identify distinct
representations of a strange attractor. What can be stated is
that if any representation of the attractor is contained in an
n-dimensional phase-space manifold, all representations be-
come equivalent when lifted into spaces of dimension RY,
N=2n+1 [12]. Every dynamical system possesses a single
universal representation in these dimensions.

VI. SUMMARY

In this paper we have taken the first steps in creating a
representation theory for dynamical systems. We have car-
ried out this program for a restricted but widely occurring
and very important class of dynamical systems: those whose
natural phase space is the topological solid torus D?X S!.
Three topological indices are required to distinguish in-
equivalent embeddings into R3. Parity and knot type are ex-
trinsic indices and global torsion is an intrinsic index. When
embeddings are lifted into R*, parity and knot type are no
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TABLE 1. Representation labels for genus-one systems.

Representation Obstructions to Isotopy
Labels R3 R4 RS
Global torsion Y Y

Parity Y

Knot type Y

longer obstructions to isotopy and the global torsion is re-
duced from 7 to Z,. When the embedding space is further
enlarged to R global torsion is also no longer an obstruction
to isotopy. All embeddings into R> are equivalent. These re-
sults are summarized in Table L.
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